z-logo
open-access-imgOpen Access
Arithmetic Properties of Generalized Rikuna Polynomials
Author(s) -
Z. Chonoles,
John Cullinan,
H. Hausman,
Allison M. Pacelli,
S. Pegado,
FuTsun Wei
Publication year - 2015
Publication title -
publications mathématiques de besançon
Language(s) - French
Resource type - Journals
eISSN - 2592-6616
pISSN - 1958-7236
DOI - 10.5802/pmb.2
Subject(s) - mathematics , integer (computer science) , base (topology) , galois group , polynomial , degree (music) , galois theory , order (exchange) , combinatorics , finite field , field (mathematics) , function (biology) , discrete mathematics , arithmetic , pure mathematics , computer science , mathematical analysis , physics , finance , evolutionary biology , acoustics , economics , biology , programming language
— Fix an integer ` ≥ 3. Rikuna introduced a polynomial r(x, t) defined over a function field K(t) whose Galois group is cyclic of order `, where K satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials {rn(x, t)}n≥1 of degree `. The rn(x, t) are constructed iteratively from the r(x, t). We compute the Galois groups of the rn(x, t) for odd ` over an arbitrary base field and give applications to arithmetic dynamical systems. Résumé. — Soit ` ≥ 3 un nombre entier fixé. Rikuna a défini un polynôme r(x, t) sur un corps de fonctions K(t) dont le groupe de Galois est cyclique d’ordre `, où K satisfait à certaines hypothèses pas très restrictives. Dans cet article, nous définissons la famille des polynômes de Rikuna généralisés {rn(x, t)}n≥1 de degré `. Les rn(x, t) sont construits de manière itérative à partir de r(x, t). Nous calculons les groupes de Galois des rn(x, t) pour ` impair sur un corps de base arbitraire et donnons des applications aux systèmes dynamiques arithmétiques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom