z-logo
open-access-imgOpen Access
The maximal unramified extensions of certain complex Abelian number fields
Author(s) -
Siman Wong
Publication year - 2016
Publication title -
publications mathématiques de besançon
Language(s) - French
Resource type - Journals
eISSN - 2592-6616
pISSN - 1958-7236
DOI - 10.5802/pmb.14
Subject(s) - discriminant , mathematics , algebraic number field , riemann hypothesis , pure mathematics , abelian group , quadratic equation , argument (complex analysis) , degree (music) , extension (predicate logic) , class (philosophy) , field (mathematics) , ramification , generalization , discrete mathematics , mathematical analysis , computer science , physics , artificial intelligence , geometry , biochemistry , chemistry , acoustics , programming language
— We combine root discriminant bounds with a ramification argument to show unconditionally that Q( √ −7, √ 61) has no nontrivial unramified extension, a result first proved by Yamamura under the generalized Riemann hypothesis (GRH). This renders unconditional his determination of the maximal unramified extensions of the complex quadratic fields with class number 2. Assuming the GRH, we prove an analogous result for the degree 14 subfield of the cyclotomic field Q(ζ49), a case previously not handled by conditional root discriminant bounds alone. Résumé. — Nous combinons les minorations des discriminants avec des considérations portant sur la ramification pour montrer, inconditionnellement, que le corps Q( √ −7, √ 61) n’a pas d’extension non-ramifiée non-triviale (ce résultat a été montré par Yamamura avec l’aide de GRH). Cela rend inconditionnelle la détermination des extensions non-ramifiées maximales des coprs quadratiques complexes de nombre de classes 2. Sous GRH, nous montrons un résultat analogue pour le sous-corps de degré 14 de Q(ζ49) (corps non étudié même sous GRH).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom