Around the Littlewood conjecture in Diophantine approximation
Author(s) -
Yann Bugeaud
Publication year - 2015
Publication title -
publications mathématiques de besançon
Language(s) - English
Resource type - Journals
eISSN - 2592-6616
pISSN - 1958-7236
DOI - 10.5802/pmb.1
Subject(s) - conjecture , diophantine equation , diophantine approximation , diophantine set , mathematics , combinatorics
— The Littlewood conjecture in Diophantine approximation claims that inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0 holds for all real numbers α and β, where ‖ · ‖ denotes the distance to the nearest integer. Its p-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q≥1 q · ‖qα‖ · |q|p = 0 holds for every real number α and every prime number p, where | · |p denotes the p-adic absolute value normalized by |p|p = p−1. We survey the known results on these conjectures and highlight recent developments. Résumé. — En approximation diophantienne, la conjecture de Littlewood stipule que tous les nombres réels α et β vérifient inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0, où ‖ · ‖ désigne la distance à l’entier le plus proche. Son analogue p-adique, formulé par de Mathan et Teulié en 2004, affirme que l’égalité inf q≥1 q · ‖qα‖ · |q|p = 0 est valable pour tout nombre réel α et tout nombre premier p, où | · |p est la valeur absolue p-adique normalisée par |p|p = p−1. Nous donnons un survol des résultats connus sur ces conjectures en insistant sur les développements récents. A famous open problem in simultaneous Diophantine approximation, called the Littlewood conjecture, claims that, for every given pair (α, β) of real numbers, we have inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0, where ‖ · ‖ denotes the distance to the nearest integer. According to Montgomery [27], the first occurrence of the Littlewood conjecture appeared in 1942 in a paper by Spencer [34], a student of Littlewood. 2010 Mathematics Subject Classification. — 11J04, 11J13, 11J61.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom