z-logo
open-access-imgOpen Access
Around the Littlewood conjecture in Diophantine approximation
Author(s) -
Yann Bugeaud
Publication year - 2015
Publication title -
publications mathématiques de besançon
Language(s) - English
Resource type - Journals
eISSN - 2592-6616
pISSN - 1958-7236
DOI - 10.5802/pmb.1
Subject(s) - conjecture , diophantine equation , diophantine approximation , diophantine set , mathematics , combinatorics
— The Littlewood conjecture in Diophantine approximation claims that inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0 holds for all real numbers α and β, where ‖ · ‖ denotes the distance to the nearest integer. Its p-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q≥1 q · ‖qα‖ · |q|p = 0 holds for every real number α and every prime number p, where | · |p denotes the p-adic absolute value normalized by |p|p = p−1. We survey the known results on these conjectures and highlight recent developments. Résumé. — En approximation diophantienne, la conjecture de Littlewood stipule que tous les nombres réels α et β vérifient inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0, où ‖ · ‖ désigne la distance à l’entier le plus proche. Son analogue p-adique, formulé par de Mathan et Teulié en 2004, affirme que l’égalité inf q≥1 q · ‖qα‖ · |q|p = 0 est valable pour tout nombre réel α et tout nombre premier p, où | · |p est la valeur absolue p-adique normalisée par |p|p = p−1. Nous donnons un survol des résultats connus sur ces conjectures en insistant sur les développements récents. A famous open problem in simultaneous Diophantine approximation, called the Littlewood conjecture, claims that, for every given pair (α, β) of real numbers, we have inf q≥1 q · ‖qα‖ · ‖qβ‖ = 0, where ‖ · ‖ denotes the distance to the nearest integer. According to Montgomery [27], the first occurrence of the Littlewood conjecture appeared in 1942 in a paper by Spencer [34], a student of Littlewood. 2010 Mathematics Subject Classification. — 11J04, 11J13, 11J61.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom