On the slopes of the {U_5} operator acting on overconvergent modular forms
Author(s) -
L. J. P. Kilford
Publication year - 2008
Publication title -
journal de théorie des nombres de bordeaux
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 26
eISSN - 2118-8572
pISSN - 1246-7405
DOI - 10.5802/jtnb.620
Subject(s) - mathematics , modular form , operator (biology) , modular design , pure mathematics , character (mathematics) , conductor , number theory , dirichlet distribution , algebra over a field , mathematical analysis , geometry , computer science , biochemistry , chemistry , repressor , transcription factor , gene , boundary value problem , operating system
We show that the slopes of the~$U_5$ operator acting on slopes of 5-adic overconvergent modular forms of weight~$k$ with primitive Dirichlet character~$\chi$ of conductor~25 are given by either \[ \left\{{1/4}\cdot\lfloor\frac{8i}{5}\rfloor: i \in \N\right\}\text{or }\left\{{1/4}\cdot\lfloor\frac{8i+4}{5}\rfloor: i \in \N\right\}, \] depending on~$k$ and~$\chi$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom