z-logo
open-access-imgOpen Access
Effective Evolution Equations in Quantum Physics
Author(s) -
Benjamin Schlein
Publication year - 2012
Publication title -
journées équations aux dérivées partielles
Language(s) - English
Resource type - Journals
eISSN - 2118-9366
pISSN - 0752-0360
DOI - 10.5802/jedp.83
Subject(s) - bbgky hierarchy , boson , physics , time evolution , hierarchy , quantum , representation (politics) , classical mechanics , einstein field equations , statistical physics , quantum dynamics , evolution equation , fock space , many body problem , theoretical physics , einstein , quantum mechanics , mathematics , mathematical analysis , politics , political science , economics , law , market economy , distribution function
In these notes, we review some recent mathematical results concerning the derivation of effective evolution equations from many body quantum mechanics. In particular, we discuss the emergence of the Hartree equation in the so-called mean field regime (for example, for systems of gravitating bosons), and we show that the Gross-Pitaevskii equation approximates the dynamics of initially trapped Bose-Einstein condensates. We explain how effective evolution equations can be derived, on the one hand, by analyzing the so called BBGKY hierarchy, describing the time-evolution of reduced density matrices, and, on the other hand, by studying the dynamics of coherent initial states in a Fock-space representation of the many body system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom