Unique determination of the electric potential in the presence of a fixed magnetic potential in the plane
Author(s) -
Pedro Caro,
Keith M. Rogers
Publication year - 2019
Publication title -
journées équations aux dérivées partielles
Language(s) - English
Resource type - Journals
eISSN - 2118-9366
pISSN - 0752-0360
DOI - 10.5802/jedp.667
Subject(s) - electric potential , scattering , physics , magnetic potential , schrödinger equation , plane (geometry) , mathematical analysis , mathematics , mathematical physics , quantum mechanics , magnetic field , geometry , voltage
For potentials $V\in L^\infty(\mathbb{R}^2,\mathbb{R})$ and $A\in W^{1,\infty}(\mathbb{R}^2,\mathbb{R}^2)$ with compact support, we consider the Schr\"odinger equation $-(\nabla +iA)^2 u+Vu=k^2u$ with fixed positive energy $k^2$. Under a mild additional regularity hypothesis, and with fixed magnetic potential $A$, we show that the scattering solutions uniquely determine the electric potential $V$. For this we develop the method of Bukhgeim for the purely electric Schr\"odinger equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom