The mean-field limit for the dynamics of large particle systems
Author(s) -
François Golse
Publication year - 2003
Publication title -
journées équations aux dérivées partielles
Language(s) - English
Resource type - Journals
eISSN - 2118-9366
pISSN - 0752-0360
DOI - 10.5802/jedp.623
Subject(s) - poisson distribution , limit (mathematics) , statistical physics , mean field theory , physics , dynamics (music) , particle system , field (mathematics) , classical mechanics , mathematical physics , mathematics , quantum mechanics , mathematical analysis , statistics , computer science , acoustics , pure mathematics , operating system
This short course explains how the usual mean-field evolution PDEs in Statistical Physics — such as the Vlasov-Poisson, Schrodinger-Poisson or time-dependent Hartree-Fock equations — are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems. Mon cher Athos, je veux bien, puisque votre sante l’exige absolument, que vous vous reposiez quinze jours. Allez donc prendre les eaux de Forges ou telles autres qui vous conviendront, et retablissez-vous promptement. Votre affectionne Treville Alexandre Dumas Les Trois Mousquetaires 1. A review of physical models The subject matter of these lectures is the relation between “exact” microscopic models that govern the evolution of large particle systems and a certain type of approximate models known in Statistical Mechanics as “mean-field equations”. This notion of mean-field equation is best understood by getting acquainted with the most famous examples of such equations, described below. MSC 2000 : 82C05, 82C10, 82C22, 35A10, 35Q40, 35Q55.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom