Stable solutions and their spatial structure of the Ginzburg-Landau equation
Author(s) -
Yoshihisa Morita
Publication year - 1995
Publication title -
journées équations aux dérivées partielles
Language(s) - English
Resource type - Journals
eISSN - 2118-9366
pISSN - 0752-0360
DOI - 10.5802/jedp.484
Subject(s) - ginzburg–landau theory , mathematical physics , statistical physics , physics , mathematics , condensed matter physics , superconductivity
Recent papers [7], [8] and [10] studies the Ginzburg-Landau equation A<& + A(l — l^l)^ = 0,$ == u\ +iu^ in a bounded domain fl C IR with the homogeneous Neumann boundary condition. Those works revealed the instability of non-constant solutions in any convex domain and the existance of stable non-constant solutions in topologically non-trivial domains. This report surveys these studies together with introduction of a new result.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom