z-logo
open-access-imgOpen Access
Dynamic Modeling of Stick-Slip Motion in a Legged, Piezoelectric Driven Microrobot
Author(s) -
Ali Kamali E.,
Gholamreza Vossoughi
Publication year - 2010
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/9704
Subject(s) - unimorph , computer science , slip (aerodynamics) , piezoelectricity , linear motion , control theory (sociology) , robot , simulation , equations of motion , motion (physics) , acoustics , classical mechanics , physics , control (management) , artificial intelligence , thermodynamics
The motion of a stick-slip microrobot propelled by its piezoelectric unimorph legs is mathematically modeled. Using a continuously distributed mass model for the robot's body, the working equation of the mechanism is derived based on the assumption of linear Euler-Bernoulli beam theory and linear piezoelectric behavior. Moreover, the required condition for generating net motion is calculated in terms of physical characteristics of the microrobot. It is demonstrated that the higher the friction constant, then a lower average speed is obtained. Also, it is shown that a microrobot with heavier legs can move in a rougher environment. Regardless of the mass proportion between robot's main body and its legs, a certain level of speed can, always, be achieved. The proposed results will be well suited to design, construct, and control the microrobots moving with piezoelectric benders, as their feet

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom