z-logo
open-access-imgOpen Access
Petri Net Robotic Task Plan Representation: Modelling, Analysis and Execution
Author(s) -
Hugo Costelha,
Pedro Lim
Publication year - 2010
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/9659
Subject(s) - petri net , task (project management) , computer science , representation (politics) , plan (archaeology) , programming language , artificial intelligence , engineering , systems engineering , geography , political science , politics , law , archaeology
As the usage of robots in everyday tasks increases, there is a need to improve our knowledge concerning the execution of those robotic tasks. Robotic task models are usually not based on formal approaches but tailored to the task at hand. Applying discrete event system concepts to model robotic tasks provides a systematic approach to modelling, analysis and design, scaling up to realistic applications, and enabling analysis of formal properties, as well as design from specifications. Most of the work found on the literature concerning the design of robotic tasks using Discrete Event Systems is based on Finite State Automata for code generation (Dominguez-Brito et al., 2000), qualitative specifications (Kosecka et al., 1997), some quantitative specifications (Espiau et al., 1995), modularisation (Kosecka et al., 1997) and even to model multi-robot systems (Damas & Lima, 2004). Work using Petri nets to design robotic tasks under temporal requirements, focusing also on the generation of real-time, error-free code can be found in (Montano et al., 2000). Petri net Plans were introduced in (Ziparo & Iocchi, 2006) for design and execution of task plans. However, these do not close the loop, i.e., do not consider the actual implications of the actions on the environment, focusing mostly on the design. In this chapter we describe a Petri net based framework which allows a systematic approach for modelling, analysis and execution of robotic tasks. This framework is divided in three layers: task plan models, action models and environment models. The models range from the robot decision-making algorithms (task plan models) to the environment dynamics, due to physics and/or actions of other agents (environment models). In the proposedmodels, Petri net places represent tasks, primitive actions and logic predicates set by sensor readings. These logic predicates provide and abstraction of the world relevant features. By composing these models, and applying analysis techniques, important a priori information can be obtained regarding the properties of the task. The models are based on Marked Ordinary Petri Nets and Generalised Stochastic Petri Nets (Murata, 1989), allowing

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom