z-logo
open-access-imgOpen Access
Types of Machine Learning Algorithms
Author(s) -
Taiwo Oladipupo
Publication year - 2010
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/9385
Subject(s) - computer science , artificial intelligence , machine learning , algorithm
• Supervised learning --where the algorithm generates a function that maps inputs to desired outputs. One standard formulation of the supervised learning task is the classification problem: the learner is required to learn (to approximate the behavior of) a function which maps a vector into one of several classes by looking at several input-output examples of the function. • Unsupervised learning --which models a set of inputs: labeled examples are not available. • Semi-supervised learning --which combines both labeled and unlabeled examples to generate an appropriate function or classifier. • Reinforcement learning --where the algorithm learns a policy of how to act given an observation of the world. Every action has some impact in the environment, and the environment provides feedback that guides the learning algorithm. • Transduction --similar to supervised learning, but does not explicitly construct a function: instead, tries to predict new outputs based on training inputs, training outputs, and new inputs. • Learning to learn --where the algorithm learns its own inductive bias based on previous experience.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom