Nanoimprint Lithography
Author(s) -
Hongbo Lan,
Yucheng Ding
Publication year - 2010
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/8189
Subject(s) - nanoimprint lithography , materials science , nanotechnology , medicine , alternative medicine , pathology , fabrication
The Nanoimprint lithography (NIL) is a novel method of fabricating micro/nanometer scale patterns with low cost, high throughput and high resolution (Chou et al., 1996). Unlike traditionally optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques (Guo, 2007). The resolution of NIL mainly depends on the minimum template feature size that can be fabricated. Compare with optical lithography and next generation lithography (NGL), the difference in principles makes NIL capable of producing sub-10 nm features over a large area with a high throughput and low cost (Chou et al., 1997). Therefore, the charm of NIL largely comes from its capability for patterning with high resolution, high fidelity, high throughput, and low cost. In addition, nanometer sized patterns can easily be formed on various substrates, e.g., silicon wafers, glass plates, flexible polymer films, and even nonplanar substrates. The process has been added to the International Technology Roadmap for Semiconductors (ITRS) for the 32 and 22 nm nodes. Toshiba, moreover, has validated it for 22 nm and beyond. What is more significant is that NIL is the first sub-30 nm lithography to be validated by an industrial user (Yoneda et al., 1997). Nanoimprint lithography was first invented by Chou and his students in 1995 as a low-cost and high throughput alternative to photolithography and e-beam lithography (EBL) for researchers who need high resolution patterning, motivated by the high expense and limited resolution of optical lithography. Due to historical reasons, the term NIL initially refers to a hot embossing lithography (HEL) process, and was also used as a synonym for thermal NIL (Chou et al., 1995). However, NIL has now an extended meaning which includes not only two fundamental types (Hot Embossing Lithography and UV-based Nanoimprint Lithography, UV-NIL) but also many different variations developed such as roll imprint process, laser-assisted direct imprint, reverse imprint lithography, substrate conformal imprint lithography, ultrasonic NIL, etc. Compared to other lithography processes and next generation lithography with nanoscale resolution, such as e-beam lithography and extreme ultraviolet lithography (EUVL), the most prominent advantage of NIL is its ability to pattern 3D and large-area structures from micron to nanometer scale and Source: Lithography, Book edited by: Michael Wang, ISBN 978-953-307-064-3, pp. 656, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom