A Tabular Format for Computing Inverse Kinematic Equations for a 3DOF Robot Leg
Author(s) -
Francis Nickols
Publication year - 2009
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/7234
Subject(s) - cartesian coordinate system , power series , computer science , series (stratigraphy) , integer (computer science) , kinematics , servomechanism , degrees of freedom (physics and chemistry) , inverse kinematics , computation , power (physics) , algorithm , robot , control theory (sociology) , mathematics , mathematical analysis , artificial intelligence , control engineering , geometry , physics , paleontology , control (management) , classical mechanics , quantum mechanics , engineering , biology , programming language
A method is presented for accurately computing the three servomechanism angles that place the leg tip of a 3DOF robot leg in cylindrical coordinate space, R, θ, Z. The method is characterized by (i) a multivariable integer power series for each degree of freedom that can be used to replace traditional trigonometrical functions, and, (ii) only integer numbers are used. A technique is shown that derives the coefficients, Ci j k, of each of the terms in the series that represents a servomechanism angle, S. This power series method has the advantage of; (i) satisfying accuracy requirements, (ii) producing a unique solution, (iii) high speed realtime computation, (iv) low memory requirement and (v) implementation into a generic algorithm or hardware such as a field programmable gate array. The series can represent many continuous kinematic systems just by changing the values of the coefficients. The coefficients are rapidly computed via a spreadsheet. The method can be extended to more than three degrees of freedom and also mapped into other coordinate frames such as a Cartesian or spherical
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom