Design of Low-cost Telecommunications CubeSat-class Spacecraft
Author(s) -
Adnane Addaim,
Abdelhaq Kherras,
El Bachir
Publication year - 2010
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/6925
Subject(s) - cubesat , spacecraft , class (philosophy) , telecommunications , computer science , aerospace engineering , engineering , artificial intelligence , satellite
The CubeSat-class Spacecraft hardware has volume, mass, and power limitations more extreme than in other satellites. In fact, the CubeSat-class spacecraft is a Cube with dimensions 10cm x 10cm x 10cm, mass one kilogram maximum and the available power is about 2Watt by mounting the solar cells on the CubeSat structure. The CubeSat-class spacecrafts have the advantages of being able to perform as a test bed for new core space technologies to be applied to space programs, for much lower cost, shorter schedule, and less risk. For this reason, the world leaders in space technology, including the US and Europe, are focusing their efforts on smaller satellites under the motto of “Faster, Cheaper, Better” that can perform missions traditionally assigned to large/medium satellites in the past. In general, the conventional design of a satellite is based on the modular architecture where each satellite subsystem has hardware and software autonomy. In the case of a CubeSatclass satellite, this kind of architecture did not prove its effectiveness since a significant number of CubeSats could not make a success of their missions. The goal of this chapter consists in developing a new design methodology of the CubeSat-class satellites. Each satellite includes many subsystems; each subsystem has a role to play aboard the satellite. In practice, in the field of the satellites design, each satellite subsystem, which has dedicated hardware and software, is assigned to one team of experts because each satellite subsystem belongs to one branch of science. On the other hand, there are connections between the various subsystems. Therefore, each team works in coordination with other teams to achieve the tasks of its subsystem. Now, the question is: Do we have legitimacy to integrate several subsystems in only one. The answer is simple. For the satellites larger than the Microsatellite, it is not conceivable to integrate several subsystems in only one. On the contrary, to ensure the correct operation of the satellite considering the importance of the mission and the significant budget allocated, we usually proceed to the redundancy of some key equipment aboard the satellite in spite of the complexity that adds. In the case of CubeSat-class spacecraft, considered as the other extreme of the category of the small satellites, given the imposed constraints (available electrical power is about 2Watt, mass ≤ 1kg and volume of 10x10x10 cm3) and the restricted financing (university), we find all legitimacy to integrate several subsystems in only one. This approach will save energy, will reduce the mass and will save space aboard the satellite. The key of this integration is to Source: Aerospace Technologies Advancements, Book edited by: Dr. Thawar T. Arif, ISBN 978-953-7619-96-1, pp. 492, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom