z-logo
open-access-imgOpen Access
Ant Colony Optimization Combined with Immunosuppression and Parameters Switching Strategy for Solving Path Planning Problem of Landfill Inspection Robots
Author(s) -
Chao Zhang,
Qing Li,
Peng Chen,
Yinan Feng
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/63737
Subject(s) - ant colony optimization algorithms , maxima and minima , computer science , path (computing) , motion planning , mathematical optimization , robot , immunosuppression , artificial intelligence , mathematics , medicine , mathematical analysis , programming language
An improved ant colony optimization (ACO) combined with immunosuppression and parameters switching strategy is proposed in this paper. In this algorithm, a novel judgment criterion for immunosuppression is introduced, that is, if the optimum solution has not changed for default iteration number, the immunosuppressive strategy is carried out. Moreover, two groups of parameters in ACO are switched back and forth according to the change of optimum solution as well. Therefore, the search space is expanded greatly and the problem of the traditional ACO such as falling into local minima easily is avoided effectively. The comparative simulation studies for path planning of landfill inspection robots in Asahikawa, Japan are executed, and the results show that the proposed algorithm has better performance characterized by higher search quality and faster search speed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom