Monocular Road Detection Using Structured Random Forest
Author(s) -
Liang Xiao,
Bin Dai,
Daxue Liu,
Dawei Zhao,
Tao Wu
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/63561
Subject(s) - conditional random field , random forest , computer science , markov random field , artificial intelligence , pixel , ambiguity , machine learning , random field , field (mathematics) , pattern recognition (psychology) , data mining , computer vision , image (mathematics) , image segmentation , mathematics , statistics , pure mathematics , programming language
Road detection is a key task for autonomous land vehicles. Monocular vision-based road detection algorithms are mostly based on machine learning approaches and are usually cast as classification problems. However, the pixel-wise classifiers are faced with the ambiguity caused by changes in road appearance, illumination and weather. An effective way to reduce the ambiguity is to model the contextual information with structured learning and prediction. Currently, the widely used structured prediction model in road detection is the Markov random field or conditional random field. However, the random field-based methods require additional complex optimization after pixel-wise classification, making them unsuitable for real-time applications. In this paper, we present a structured random forest-based road-detection algorithm which is capable of modelling the contextual information efficiently. By mapping the structured label space to a discrete label space, the test function of each split node can be trained in a similar way to that of the classical random forests. Structured random forests make use of the contextual information of image patches as well as the structural information of the labels to get more consistent results. Besides this benefit, by predicting a batch of pixels in a single classification, the structured random forest-based road detection can be much more efficient than the conventional pixel-wise random forest. Experimental results tested on the KITTI-ROAD dataset and data collected in typical unstructured environments show that structured random forest-based road detection outperforms the classical pixel-wise random forest both in accuracy and efficiency
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom