z-logo
open-access-imgOpen Access
A Parametric Modelling Method for Dexterous Finger Reachable Workspaces
Author(s) -
Wenzhen Yang,
Zhong-Zheng Jin,
Xingli Wu,
Guanwen Chen,
Zhigeng Pan,
Zhichao Zhu
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/62689
Subject(s) - workspace , computer science , grasp , parametric statistics , feature (linguistics) , flexibility (engineering) , construct (python library) , constraint (computer aided design) , computer vision , artificial intelligence , robot , mechanical engineering , mathematics , engineering , linguistics , statistics , philosophy , programming language
The well-known algorithms, such as the graphic method, analytical method or numerical method, have some defects when modelling the dexterous finger workspace, which is a significant kinematical feature of dexterous hands and valuable for grasp planning, motion control and mechanical design. A novel modelling method with convenient and parametric performances is introduced to generate the dexterous-finger reachable workspace. This method constructs the geometric topology of the dexterous-finger reachable workspace, and uses a joint feature recognition algorithm to extract the kinematical parameters of the dexterous finger. Compared with graphic, analytical and numerical methods, this parametric modelling method can automatically and conveniently construct a more vivid workspace's forms and contours of the dexterous finger. The main contribution of this paper is that a workspace-modelling tool with high interactive efficiency is developed for designers to precisely visualize the dexterous-finger reachable workspace, which is valuable for analysing the flexibility of the dexterous finger

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom