Multiple Kinect Sensor Fusion for Human Skeleton Tracking Using Kalman Filtering
Author(s) -
Sungphill Moon,
Youngbin Park,
Dong Wook Ko,
Il Hong Suh
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/62415
Subject(s) - computer science , computer vision , artificial intelligence , kalman filter , sensor fusion , tracking (education) , reliability (semiconductor) , ground truth , tracing , tracking system , workspace , robot , psychology , pedagogy , power (physics) , physics , quantum mechanics , operating system
Kinect sensors are able to achieve considerable skeleton tracking performance in a convenient and low-cost manner. However, Kinect sensors often generate poor skeleton poses due to self-occlusion, which is a common problem among most vision-based sensing systems. A simple way to solve this problem is to use multiple Kinect sensors in a workspace and combine the measurements from the different sensors. However, this method creates a new issue known as the data fusion problem. In this research, we developed a human skeleton tracking system using the Kalman filter framework, in which multiple Kinect sensors are used to correct inaccurate tracking data from a single Kinect sensor. Our contribution is to propose a method to determine the reliability of each tracked 3D position of a joint and then combine multiple observations based on measurement confidence. We evaluate the proposed approach by comparison with the ground truth obtained using a commercial marker-based motion-capture system
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom