z-logo
open-access-imgOpen Access
Balancing Control of Bicyrobo by Particle Swarm Optimization-Based Structure-Specified Mixed H2/H∞ Control
Author(s) -
Bùi Trung Thành,
Manukid Parnichkun
Publication year - 2008
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/6235
Subject(s) - particle swarm optimization , computer science , robustness (evolution) , mathematical optimization , control theory (sociology) , controller (irrigation) , genetic algorithm , algorithm , mathematics , control (management) , biochemistry , chemistry , artificial intelligence , biology , agronomy , gene
In this paper, a structure-specified mixed H2/H∞ controller design using particle swarm optimization (PSO) is proposed for control balancing of Bicyrobo, which is an unstable system associated with many sources of uncertainties due to un-model dynamics, parameter variations, and external disturbances. The structure-specified mixed H2/H∞ control is a robust and optimal control technique. However, the design process normally comes up with a complex and non-convex optimization problem which is difficult to solve by the conventional optimization methods. PSO is a recently useful meta-heuristic search method used to solve multi-objective and non-convex optimization problems. In the method, PSO is used to search for parameters of a structure-specified controller which satisfies mixed H2/H∞ performance index. The simulation and experimental results show the robustness of the proposed controller in compared with the conventional proportional plus derivative (PD) controller, and the efficiency of the proposed algorithm in compared with the genetic algorithm (GA)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom