The Local Definability of Robotic Large-Scale Knowledge Based on Splitting
Author(s) -
Maonian Wu,
Yunliang Jiang,
Shaojun Zhu
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/62180
Subject(s) - computer science , propositional calculus , robot , artificial intelligence , knowledge base , scale (ratio) , propositional variable , theoretical computer science , description logic , intermediate logic , programming language , physics , quantum mechanics
In order to reduce the computational tasks in robots with large-scale and complex knowledge, several methods of robotic knowledge localization have been proposed over the past decades. Logic is an important and useful tool for complex robotic reasoning, action planning, learning and verification. This paper uses propositional atoms in logic to describe the affecting factors of robotic large-scale knowledge. Definability in logic reasoning shows that truths of some propositional atoms are decided by other propositional atoms. Definability technology is an important method to eliminate inessential propositional atoms in robotic large-scale and complex knowledge, so the computational tasks in robotic knowledge can be completed faster. On the other hand, by applying the splitting technique, the knowledge base can be equivalently divided into a number of sub-knowledge bases, without sharing any propositional atoms with others. In this paper, we show that the inessential propositional atoms can be decided faster by the local definability technology based on the splitting method, first formed in local belief revision by Parikh in 1999. Hence, the decision-making in robotic large-scale and complex knowledge is more effective
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom