Stereo-Based Visual Odometry for Autonomous Robot Navigation
Author(s) -
Ioannis Kostavelis,
Evangelos Boukas,
Lazaros Nalpantidis,
Αντώνιος Γαστεράτος
Publication year - 2016
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/62099
Subject(s) - computer science , visual odometry , artificial intelligence , computer vision , odometry , outlier , ransac , orientation (vector space) , mobile robot , benchmark (surveying) , robot , stereopsis , image (mathematics) , mathematics , geometry , geodesy , geography
Mobile robots should possess accurate self-localization capabilities in order to be successfully deployed in their environment. A solution to this challenge may be derived from visual odometry (VO), which is responsible for estimating the robot's pose by analysing a sequence of images. The present paper proposes an accurate, computationally-efficient VO algorithm relying solely on stereo vision images as inputs. The contribution of this work is twofold. Firstly, it suggests a non-iterative outlier detection technique capable of efficiently discarding the outliers of matched features. Secondly, it introduces a hierarchical motion estimation approach that produces refinements to the global position and orientation for each successive step. Moreover, for each subordinate module of the proposed VO algorithm, custom non-iterative solutions have been adopted. The accuracy of the proposed system has been evaluated and compared with competent VO methods along DGPS-assessed benchmark routes. Experimental results of relevance to rough terrain routes, including both simulated and real outdoors data, exhibit remarkable accuracy, with positioning errors lower than 2%.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom