Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings
Author(s) -
Biyan Chen,
Avinash Pathak,
Keshab Gangopadhyay,
Peter V. Cornish,
Shubhra Gangopadhyay
Publication year - 2015
Publication title -
nanobiomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.561
H-Index - 12
ISSN - 1849-5435
DOI - 10.5772/61094
Subject(s) - total internal reflection fluorescence microscope , plasmon , photobleaching , materials science , microscope , microscopy , fluorescence , surface plasmon , fluorescence microscope , optics , optoelectronics , total internal reflection , surface plasmon resonance , nanotechnology , nanoparticle , physics
We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM) visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF) microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom