z-logo
open-access-imgOpen Access
Design and Control of a Powered Hip Exoskeleton for Walking Assistance
Author(s) -
Qingcong Wu,
Xingsong Wang,
Fengpo Du,
Xiaobo Zhang
Publication year - 2015
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/59757
Subject(s) - exoskeleton , computer science , kinematics , controller (irrigation) , wearable computer , robot , simulation , degrees of freedom (physics and chemistry) , control system , control engineering , artificial intelligence , engineering , embedded system , physics , electrical engineering , classical mechanics , quantum mechanics , agronomy , biology
The wearable powered exoskeleton is a human-robot cooperation system that integrates the strength of a robot with human intelligence. This paper presents the research results into a powered hip exoskeleton (PH-EXOS) designed to provide locomotive assistance to individuals with walking impediments. The Bowden cable actuated exoskeleton has an anthropomorphic structure with six degrees of freedom (DOF) in order to match the human hip anatomy and enable natural interaction with the user. The mechanical structure, the actuation system, and the interaction kinematics of PH-EXOS are optimized to achieve preferable manoeuvrability and harmony. For the control of the exoskeleton, a real-time control system is established in xPC target environment based on Matlab/RTW. A Cascaded PID controller is developed to perform the trajectories tracking tasks in passive control mode. Besides, based on the pressure information on the thigh, a fuzzy adaptive controller is developed to perform walking assistance tasks in active control mode. Preliminary treadmill walking experiments on a healthy subject were conducted to verify the effectiveness of the proposed device and control approaches in reducing walking effort

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom