z-logo
open-access-imgOpen Access
SmartPATH: An Efficient Hybrid ACO-GA Algorithm for Solving the Global Path Planning Problem of Mobile Robots
Author(s) -
I. Chaâri,
Anis Koubâa,
Sahar Trigui,
Hachémi Bennaceur,
Adel Ammar,
Khaled Al-Shalfan
Publication year - 2014
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/58543
Subject(s) - computer science , ant colony optimization algorithms , dijkstra's algorithm , motion planning , crossover , mathematical optimization , genetic algorithm , mobile robot , path (computing) , algorithm , shortest path problem , yen's algorithm , robot , graph , artificial intelligence , mathematics , theoretical computer science , machine learning , programming language
Path planning is a fundamental optimization problem that is crucial for the navigation of a mobile robot. Among the vast array of optimization approaches, we focus in this paper on Ant Colony Optimization (ACO) and Genetic Algorithms (GA) for solving the global path planning problem in a static environment, considering their effectiveness in solving such a problem. Our objective is to design an efficient hybrid algorithm that takes profit of the advantages of both ACO and GA approaches for the sake of maximizing the chance to find the optimal path even under real-time constraints. In this paper, we present smartPATH, a new hybrid ACO-GA algorithm that relies on the combination of an improved ACO algorithm (IACO) for efficient and fast path selection, and a modified crossover operator to reduce the risk of falling into a local minimum. We demonstrate through extensive simulations that smartPATH outperforms classical ACO (CACO), GA algorithms. It also outperforms the Dijkstra exact method in solving the path planning problem for large graph environments. It improves the solution quality up to 57% in comparison with CACO and reduces the execution time up to 83% as compared to Dijkstra for large and dense graphs. In addition, the experimental results on a real robot shows that smartPATH finds the optimal path with a probability up to 80% with a small gap not exceeding 1m in 98%

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom