z-logo
open-access-imgOpen Access
Recursive Backstepping Stabilization of a Wheeled Mobile Robot
Author(s) -
F. Mnif
Publication year - 2004
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5819
Subject(s) - backstepping , computer science , mobile robot , control theory (sociology) , lyapunov function , controller (irrigation) , nonholonomic system , control engineering , robot , control (management) , adaptive control , artificial intelligence , nonlinear system , engineering , quantum mechanics , agronomy , biology , physics
This research is aimed to the development of a dynamic control to enhance the performance of the existing dynamic controllers for mobile robots. System dynamics of the car-like robot with nonholonomic constraints were employed. A Backstepping approach for the design of discontinuous state feedback controller is used for the design of the controller. It is shown that the origin of the closed loop system can be made stable in the sense of Lyapunov. The control design is made on the basis of a suitable Lyapunov function candidate. The effectiveness of the proposed approach is tested through simulation on a car-like vehicle mobile robot

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom