z-logo
open-access-imgOpen Access
Hybrid Kalman Filter/Fuzzy Logic based Position Control of Autonomous Mobile Robot
Author(s) -
Rerngwut Choomuang,
Nitin Afzulpurkar
Publication year - 2005
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5789
Subject(s) - odometry , computer science , computer vision , mobile robot , artificial intelligence , robot , extended kalman filter , robustness (evolution) , kalman filter , fuzzy logic , robot control , obstacle avoidance , control theory (sociology) , control (management) , biochemistry , chemistry , gene
This paper describes position control of autonomous mobile robot using combination of Kalman filter and Fuzzy logic techniques. Both techniques have been used to fuse information from internal and external sensors to navigate a typical mobile robot in an unknown environment. An obstacle avoidance algorithm utilizing stereo vision technique has been implemented for obstacle detection. The odometry errors due to systematic-errors (such as unequal wheel diameter, the effect of the encoder resolution etc.) and/or non-systematic errors (ground plane, wheel-slip etc.) contribute to various motion control problems of the robot. During the robot moves, whether straight-line and/or arc, create the position and orientation errors which depend on systematic and/or non-systematic odometry errors. The main concern in most of the navigating systems is to achieve the real-time and robustness performances to precisely control the robot movements. The objective of this research is to improve the position and the orientation of robot motion. From the simulation and experiments, we prove that the proposed mobile robot moves from start position to goal position with greater accuracy avoiding obstacles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom