Design of a Wildlife Avoidance Planning System for Autonomous Harvesting Operations
Author(s) -
Dionysis Bochtis,
Claus Aage Grøn Sørensen,
Ole Green,
Ibrahim A. Hameed,
Remigio Berruto
Publication year - 2014
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/57442
Subject(s) - wildlife , computer science , field (mathematics) , boundary (topology) , environmental resource management , risk analysis (engineering) , ecology , environmental science , mathematics , business , mathematical analysis , pure mathematics , biology
Harvesting and mowing operations are among the main potential stressors affecting wildlife within agricultural landscapes, leading to large animal losses. A number of studies have been conducted on harvesting practices to address the problem of wildlife mortality, providing a number of management actions or field area coverage strategies. Nevertheless, these are general rules limited to simple-shaped fields, and which are not applicable to more complex operational situations. The objectives of the present study were to design a system capable of deriving a wildlife avoidance driving pattern for any field shape complexity and field boundary conditions (in terms of escape and non-escape areas) and applicable to different animal behaviours. The assumed animal escape reactions are the result of the parameterization of a series of developed behavioural functions. This parameterization will be able to adapt any knowledge that is or might become available as a result of dedicated future experiments on animal behaviour for different species or different animal ages.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom