z-logo
open-access-imgOpen Access
Toward Optic Flow Regulation for Wall-Following and Centring Behaviours
Author(s) -
Julien Serres,
Franck Ruffier,
Stéphane Viollet,
Nicolas Franceschini
Publication year - 2006
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5744
Subject(s) - autopilot , centring , payload (computing) , flow (mathematics) , engineering , avionics , simulation , control theory (sociology) , aerospace engineering , control (management) , computer science , mechanical engineering , physics , artificial intelligence , computer network , network packet , mechanics
In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs) in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (∼2mm) and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs). The visuomotor feedback loop, which is called LORA(1) (Lateral Optic flow Regulation Autopilot, Mark 1), consists of a lateral OF regulator that adjusts the hovercraft's yaw velocity and keeps the lateral OF constant on one wall equal to an OF set-point. Simulations have shown that the hovercraft manages to navigate in a corridor at a “preset” groundspeed (1m/s) without requiring a supervisor to make it switch abruptly between the control-laws corresponding to behaviours such as automatic wall-following, automatic centring, and automatically reacting to an opening encountered on a wall. The passive visual sensors and the simple control system used here are suitable for use on MAVs with an avionic payload of only a few grams

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom