z-logo
open-access-imgOpen Access
Fluid Model of Sliding Suction Cup of Wall-climbing Robots
Author(s) -
Zhi-yuan Qian,
Zhao Yan-zheng,
Zhuang Fu,
Yan Wang
Publication year - 2006
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5729
Subject(s) - computer science , suction , robot , climbing , set (abstract data type) , control theory (sociology) , simulation , mechanical engineering , control (management) , structural engineering , artificial intelligence , engineering , programming language
The adhering capability, one of the most important performance indexes of wall-climbing robots(WCRs), should be taken into account when a WCR is designed. This paper proposes a novel approach for investigating the adhering characteristics of the sliding suction cup (SSCs) using fluid network theory to enhance the adhering capability of WCRs. The fluid models of the SSCs of two WCRs are developed and equivalent circuits in three cases are presented. The dynamic responses of negative pressure in SSCs are obtained and validated by a set of experiments. It indicated that the theoretical analysis is reasonable and can give some valuable design criteria on the structure parameters of SSCs and control strategies of suction force of SSCs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom