Natural Heat-Sinking Control Method for High-Speed Actuation of the SMA
Author(s) -
Chee Siong Loh,
Hiroshi Yokoi,
Tamio Arai
Publication year - 2006
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5725
Subject(s) - sma* , shape memory alloy , materials science , actuator , heat sink , alloy , computer science , mechanical engineering , composite material , algorithm , artificial intelligence , engineering
This paper describes two methodologies for increasing the actuation speed of the shape memory alloy (SMA) actuator in ambient environment. The first method involves the implementation of a simple, light-weight heat sink, which consists only of a combination of an outer metal tube with the silicone grease, but able to cool the heated alloy effectively. The second method describes a high current pulse actuation that actuates the alloy fastly using pulses in the milliseconds order. We hypothesize that a fast actuation of the SMA results in small increase in temperature, due to energy transformation from heat energy to the kinetic energy in the SMA. This new heating method revolutionizes the actuation of the alloy for a significantly faster response
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom