Dynamic Modeling and Inverse Dynamic Analysis of Flexible Parallel Robots
Author(s) -
Zhaocai Du,
Yueqing Yu
Publication year - 2008
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5654
Subject(s) - computer science , kinematics , finite element method , timoshenko beam theory , inertia , robot , coupling (piping) , inverse dynamics , parallel manipulator , inverse kinematics , bending , dynamic simulation , flexibility (engineering) , equations of motion , screw theory , control theory (sociology) , simulation , structural engineering , classical mechanics , physics , mathematics , mechanical engineering , artificial intelligence , engineering , statistics , control (management)
This paper presents a method for the dynamic modeling of parallel robots with flexible links and rigid moving platform based on finite element theory. The relation between elastic displacements of links is investigated, taking into consideration the coupling effects of elastic motion and rigid motion. The kinematic and dynamic constraint conditions of elastic displacements of flexible parallel robots are presented. The Kineto-Elastodynamics theory and Timoshenko beam theory are employed to derive the equations of motion, considering the effects of distributed mass, lumped mass, rotary inertia, shearing deformation, bending deformation, lateral deformations and all the dynamic coupling terms. The dynamic behavior due to flexibility of links is well illustrated through numerical simulation. Compared with the results of SAMCEF software simulation, the numerical simulation results show good coherence and the advantages of the method. The flexibility of links is demonstrated to have significant impact on system performance and stability. A method for the inverse dynamic analysis of flexible parallel robots is presented
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom