A Primal-Dual Heuristic for a Heterogeneous Unmanned Vehicle Path Planning Problem
Author(s) -
Kaarthik Sundar,
Sivakumar Rathinam
Publication year - 2013
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/56486
Subject(s) - motion planning , mathematical optimization , heuristic , computer science , path (computing) , any angle path planning , lagrangian relaxation , set (abstract data type) , mathematics , artificial intelligence , robot , programming language
We consider a path planning problem where a team of Unmanned Vehicles (UVs) is required to visit a given set of targets. The UVs are assumed to carry different sensors, and as a result, there are vehicle-target constraints that require each UV to visit a distinct subset of targets. The objective of the path planning problem is to find a path for each UV such that each target is visited at least once by some vehicle, the vehicle-target constraints are satisfied and the total distance travelled by the vehicles is a minimum. This path planning problem is a generalization of the Hamiltonian path problem and is NP-Hard. We develop a primal-dual heuristic and incorporate the heuristic in a Lagrangian relaxation procedure to find good, feasible solutions and lower bounds for the path planning problem. Computational results show that solutions whose costs are on an average within 14% of the optimum can be obtained relatively quickly for the path planning problem involving five UVs and 40 targets
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom