z-logo
open-access-imgOpen Access
Coevolution Based Adaptive Monte Carlo Localization (CEAMCL)
Author(s) -
Ronghua Luo,
Bingrong Hong
Publication year - 2004
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/5634
Subject(s) - coevolution , monte carlo method , computer science , crossover , monte carlo localization , convergence (economics) , robot , population , artificial intelligence , mathematical optimization , algorithm , mobile robot , mathematics , statistics , ecology , biology , demography , sociology , economics , economic growth
An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the uncertainty of the robot's pose by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small size of samples can represent the desired density well enough to make precise localization. The new algorithm is termed coevolution based adaptive Monte Carlo localization (CEAMCL). Experiments have been carried out to prove the efficiency of the new localization algorithm

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom