z-logo
open-access-imgOpen Access
Human Object Recognition Using Colour and Depth Information from an RGB-D Kinect Sensor
Author(s) -
Benjamin J. Southwell,
Gu Fang
Publication year - 2013
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/55717
Subject(s) - artificial intelligence , computer vision , computer science , segmentation , rgb color model , tracking (education) , object (grammar) , image segmentation , sight , pattern recognition (psychology) , psychology , pedagogy , physics , astronomy
Human object recognition and tracking is important in robotics and automation. The Kinect sensor and its SDK have provided a reliable human tracking solution where a constant line of sight is maintained. However, if the human object is lost from sight during the tracking, the existing method cannot recover and resume tracking the previous object correctly. In this paper, a human recognition method is developed based on colour and depth information that is provided from any RGB‐D sensor. In particular, the method firstly introduces a mask based on the depth information of the sensor to segment the shirt from the image (shirt segmentation); it then extracts the colour information of the shirt for recognition (shirt recognition). As the shirt segmentation is only based on depth information, it is light invariant compared to colour‐based segmentation methods. The proposed colour recognition method introduces a confidence‐based ruling method to classify matches. The proposed shirt segmentation and colour recognition method is tested using a variety of shirts with the tracked human at standstill or moving in varying lighting conditions. Experiments show that the method can recognize shirts of varying colours and patterns robustly

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom