Kinesiology-Based Robot Foot Design for Human-Like Walking
Author(s) -
SangJoo Kwon,
Jinhee Park
Publication year - 2012
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/54763
Subject(s) - trajectory , zero moment point , computer science , ground reaction force , foot (prosody) , ankle , power walking , kinematics , robot , simulation , control theory (sociology) , preferred walking speed , physical medicine and rehabilitation , humanoid robot , artificial intelligence , physics , medicine , linguistics , philosophy , control (management) , classical mechanics , pathology , astronomy
Compared with the conventional flat foot, the flexible foot is advantageous in implementing human‐like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human‐like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP) trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM) trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom