z-logo
open-access-imgOpen Access
Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System
Author(s) -
Congqing Wang,
Pengfei Wu,
Zhou Xin,
Pei Xiwu
Publication year - 2013
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/54640
Subject(s) - control theory (sociology) , sliding mode control , computer science , vibration , trajectory , vibration control , nonlinear system , physics , control (management) , quantum mechanics , artificial intelligence , astronomy
The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free‐floating space rigid‐flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external disturbance and the vibration damping of a flexible link. Then, in modal space, the problems of the manipulator system’s trajectory tracking and the vibration suppression are discussed by using the composite control approach, which combines a non‐ singular terminal sliding mode control (NTSMC) with an active vibration suppression control (AVSC). The NTSMC uses a fuzzy logic outputinstead ofthe symbol item, which smoothes the control signal, thereby inhibiting the chattering of the sliding mode control. Compared with common sliding mode control (SMC), the approach not only can reduce the chattering of the sliding mode control, but also can eliminate the singular phenomenon of the system’s control input. In addition, it can assure the trajectory tracking and the vibration suppression. Many space missions can benefit from this modelling system, such as autonomous docking of satellites, rescuing and satellite servicing. Finally, the numerical simulations were carried out, which confirmed the effectiveness of these methods

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom