Upper Limb Rehabilitation System for Self-Supervised Therapy: Computer-Aided Daily Performance Evaluation for the Trauma and Disorder in the Spinal Cord and Peripheral Nerves
Author(s) -
Kengo Ohnishi,
Keiji Imado,
Yukio Saitō,
Hiroomi Miyagaw
Publication year - 2007
Language(s) - English
Resource type - Book series
DOI - 10.5772/5172
Subject(s) - rehabilitation , physical medicine and rehabilitation , peripheral , medicine , spinal cord , upper limb , physical therapy , psychiatry
With the serious impact on life caused by the disability after cerebrovascular accidents and other serious trauma of the nervous system, prevention strategies and survivors’ rehabilitation programs are one of the social needs in many countries. As in super-graying society with low death and birth rate like Japan, an approach of just fostering aid personnel with necessary expertise will not be satisfactory to ensure the quality of the care services. Research in therapeutic technique needs to be paralleled by technology development to reduce the load on the care givers and medical staffs, as well as the development of devices that directly assists the survivors’ independent living. Furthermore, advanced efforts are made in Japan to generally decentralize healthcare from clinics to homes and local communities. The escalating healthcare service need to be halted, and strategies such as shortening the patient’s hospital stay by reducing the time spent in bed and maximizing the time spent for rehabilitation with the support of technology. To meet our goals, further scientific research is required to understand the factors for enhancing the rehabilitation effects. This will reduce the hands-on one-on-one treatment so that the therapy programs can be provided in homes and local clinics without full-time supervision. With the promising achievements in rehabilitatio n robotics, we believe further studies on sensorbased assessments and motion control with intelligent systems can support reliable advancements of the therapy programs. In this chapter, our work on developing a rehabilitator system for cervical spinal cord injured clients is presented. Our main aim is to provide post-hospital-discharge clients with opportunity for voluntary training and to assist self-supervised therapy. Automatic recording, adaptive exercise control, and multilateral analysis are the key technology that we target for recruiting and assisting the client’s rehabilitation and medical staff’s interest in using the device.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom