The Evolution and Ergonomics of Robotic-Assisted Surgical Systems
Author(s) -
Oussama Elhage,
Ben Challacombe,
Declan Murphy Mohammed S. Khan,
Prokar Dasgupt
Publication year - 2007
Language(s) - English
Resource type - Book series
DOI - 10.5772/5156
Subject(s) - computer science , engineering , human–computer interaction
A surgical robot has been defined as “a computer-controlled manipulator with artificial sensing that can be reprogrammed to move and position tools to carry out a range of surgical tasks” (Dasgupta et al, 2005). The first fully automated surgical device used in clinical practice was developed by Wickham (Harris et al, 1997) to resect prostates in the 1980’s at Guy’s Hospital in London. Currently, robotic devices are available in many surgical specialities fulfilling an increasing number of roles. The most commonly used is the da Vinci™ master-slave system (Intuitive Surgical, Ca, USA). The da Vinci TM system is widely available commercially. It is composed of three components: surgeon console, patient-side cart and imageprocessing/insufflation stack. Its stereoscopic vision, motion scaling and EndoWrist™ technology with seven degrees of freedom (DOF) are major advancements. By far the most common procedure performed with the assistance of the da Vinci™ system is laparoscopic radical prostatectomy. Other urological procedures performed using robotic assistance include cystectomy, nephrectomy, partial nephrectomy, pyelolithotomy and pyeloplasty. Other specialities adopting this technology include cardiothoracic surgery, gynaecology, and general surgery. Ergonomically ineffectual instruments and monophasic monitors in laparoscopy are linked to surgeon’s musculoskeletal injuries and fatigue (Van Der Zee et al, 1997). Robotic surgery offers a different approach for the surgeon’s position, with added visual benefits and increased dexterity. Research in the ‘dry lab’ environment has shown that the robotic techniques, though somewhat slower, offered more precision than conventional laparoscopy (Nio et al, 2002). Laparoscopy naive surgeons have a shorter learning curve with robotic-assisted techniques compared with equivalent laparoscopic tasks. Research is ongoing in the assessment of fatigue when using robotic-assisted, laparoscopic and open techniques (Elhage et al, 2007). It is suggested that the improved ergonomic conditions offered by robotic systems may allow surgeons to operate more efficiently and with greater precision. As a result patients may have less morbidity and a shorter recovery time. O Access Database www.i-techonline.co m
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom