Gaining Control Knowledge Through an Applied Mobile Robotics Course
Author(s) -
Lluís Pacheco,
Ningsu Luo,
I. Ferrer,
X. Cufí,
Roger Arbuse
Publication year - 2011
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/27994
Subject(s) - course (navigation) , artificial intelligence , robotics , computer science , control (management) , engineering , human–computer interaction , robot , aerospace engineering
In this chapter the use of an open mobile robot platform as an innovative educational tool in order to promote and integrate control science knowledge is presented. The idea of including applied interdisciplinary concepts is an important objective in engineering education. Future work in Electrical and Computer Engineering education is pointing towards gaining the ability to understand the technical details of a wide variety of disciplines (Antsaklis et al., 1999, Murray et al., 2003). Moreover, experimental developments have helped to breathe life into theoretical concepts found in text books and have thereby greatly changed the educational experience of students (Hristu-Varsakelis and Brockett, 2002). Students react positively to realism, since the models used for such experiments are in general accurately described by some relatively simple differential equations. Within this framework, the challenge of using mobile robots becomes evident. Thus, realistic platforms that incorporate engineering standards and realistic constraints increase student skills and experience through engineering practices. In this sense, mobile robot platforms can be used as educational tools to promote and integrate different curriculum subjects. Control system world and computer science share a mutual interest in robotics. Therefore, in the educational community, the Robotics Education Lab becomes a resource for supporting courses with an academic curriculum in a broad range of subjects. Some important institutions have developed various teaching activities by introducing the mobile robots as a necessary academic tool in a broad sense in order to extend the student’s previously acquired knowledge (Carnegie Mellon University, 2011, Qu and Wu, 2006). In this context, many universities take advantage of mobile robot competitions in engineering education. This allows real world problem projects to be tackled, and fundamental concepts by increasing motivation and retention purposes to be reinforced. Thus, for example, FIRST (For Inspiration and Recognition of Science and Technology) mobile robot contest attracts young people to careers in engineering, technology and science. Robotics competition encourages students to apply knowledge gained throughout their engineering degree, it also offers all students a chance to serve as members of interdisciplinary engineering teams, and introduces both freshmen and sophomores to engineering concepts. Moreover, university curriculum is reinforced by the knowledge gained throughout applied experiences that embrace a wide spectrum of subjects (Wilczynski and Flowers, 2006). The educational and research objectives can also be achieved through the use of configurable, small, low-cost such as LEGO mobile robot kits (Valera, 2007).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom