Translational and Rotational Motion Control Considering Width for Autonomous Mobile Robots Using Fuzzy Inference
Author(s) -
Takafumi Suzuki,
Masaki Takahashi
Publication year - 2011
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/25000
Subject(s) - fuzzy inference , mobile robot , motion (physics) , computer science , artificial intelligence , fuzzy logic , inference , fuzzy inference system , rotation around a fixed axis , motion control , robot , computer vision , control (management) , control theory (sociology) , fuzzy control system , adaptive neuro fuzzy inference system , engineering , mechanical engineering
Obstacle avoidance methods for mobile robots have proposed in a broad range of studies and the availabilities have been discussed. Most of these studies regard the robots as points or circles and control methods of the translational movements are discussed. In these studies, it is pointed out that a non-circle robot can be transformed into a point robot by expanding the obstacles by the largest radius or maximum size of the robot. The effectiveness of avoiding obstacles by these approaches have been confirmed, however, according to the shape of the robot, these approaches reduce and waste the available freespace and can decrease the likelihood of getting to the goal. If wide-robots, which are horizontally long, are regarded as circles according as conventional approaches, they have possibilities not to go through between two divided objects due to the largest radius of the robot, even if they ought to be able to go through by using their shortest radius. This suggests necessity of suitable orientation angle at the moment of avoidance. Consequently, to enable wide-robots to avoid obstacles safely and efficiently, it is necessary to control not only the translational movement but also the rotational movement. In our current research, wide-robots with omni-directional platform have been employed, as shown in Fig.1. In situations like Fig.1, both wide-robots can go through only by changing the orientation angle in real time. Some researches focus attention on the orientation angle of the robot (Kavraki, 1995)(Wang & Chirikjian, 2000). In these studies, by convolving the robot and the obstacle at every orientation and constructing the C-space, the suitable orientation angles of the robot for path planning are decided. However, these methods need environmental map and do not show the effectiveness for autonomous mobile robots about avoidance of unknown obstacles in these studies. Therefore, in order to avoid unknown obstacles reactively considering the orientation angle, the wide-robot needs an algorithm that can decide the orientation angle and rotational velocity command on the spot based on the current obstacle information. Meanwhile, decision methods of the translational movement have been proposed in many studies (Wang et al., 2000) (Du et al. 2007) (Khatib, 1986) (Borenstein & Koren, 1991) (Dieter, 1997), we employ fuzzy potential method (FPM) (Tsuzaki & Yoshida, 2003). This method realizes some tasks in dynamic environment by fuzzy calculation about desire for each direction of the robot. In this research, it was shown that wheeled robots succeeded getting to the goal with conveying a soccer ball and avoiding obstacles.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom