The Bioengineering and Industrial Applications of Bacterial Alkaline Proteases: the Case of SAPB and KERAB
Author(s) -
Bassem Jaouadi,
Abdelmalek Badis,
Nedia Zaraî,
Samír Béjar
Publication year - 2011
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/23850
Subject(s) - proteases , biochemical engineering , alkaline protease , industrial biotechnology , enzyme , microbiology and biotechnology , chemistry , biochemistry , biology , protease , engineering
Enzymes have long been used as alternatives to chemicals to improve the efficiency and cost-effectiveness of a wide range of industrial systems and processes. They are currently used in basic and applied arenas of research as well as in a wide range of product design and manufacturing processes, such as those pertaining to the food, beverage, pharmaceutical, detergent, leather processing, and peptide synthesis industries (Gupta et al., 2002). Of particular interest to the aims of the present work, proteases have often been reported to constitute a resourceful class of enzymes with promising industrial applications. According to recent estimates, these enzymes account for nearly 65% of total worldwide enzyme sales (Anonyme, 2007; Rao et al., 1998). They are widely distributed in nature and play a vital role in life processes. They are particularly known for their capacity to hydrolyze peptide bonds in aqueous environments and to synthesize peptide bonds in non-aqueous biocatalysis. Proteases have been employed in a wide array of applications for many years with satisfactory results. They constitute a large family of enzymes present in a wide range of living organisms, such as plants, animals and microorganisms. In biotechnologically oriented systems and processes, however, proteases from microbial origins have often been reported to have distinct advantages when compared to plant or animal proteases, particularly because they possess almost all the characteristics desired for biotechnological applications. Among these biocatalysts, high-alkaline proteases, which alone account for about 40% of the total worldwide enzyme sales (Kirk et al., 2002), proved particularly suitable for industrial use. This is mainly due to their high stability and activity under harsh conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom