z-logo
open-access-imgOpen Access
The Potential of Genetically Engineered Magnetic Particles in Biomedical Applications
Author(s) -
Tomoko Yoshino,
Yuka Kanetsuki,
Tadashi Matsunag
Publication year - 2011
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/22750
Subject(s) - genetically engineered , nanotechnology , computational biology , materials science , biology , genetics , gene
Magnetic particles are currently one of the most important materials in the industrial sector, where they have been widely used for biotechnological and biomedical applications such as carriers for recovery and for detection of DNA, proteins, viruses, and cells (Perez et al., 2002; Kramer et al., 2004; Gonzales and Krishnan, 2005). The major advantage of magnetic particles is that they can be easily manipulated by magnetic force, which enables rapid and easy separation of target molecules bound to the particles from reaction mixtures (Mirzabekov et al., 2000; Gu et al., 2003; Kuhara et al., 2004; Xu et al., 2004). Use of magnetic particles is beneficial for complete automation of steps, resulting in minimal manual labor and providing more precise results (Sawakami-Kobayashi et al., 2003). Biomolecules such as DNA, biotin, and antibodies have been assembled onto magnetic particles and used as recognition materials for target recovery, separation, or detection. The method chosen for biomolecule assembly is determined by the surface properties of the magnetic particles. Various methods of assembly onto magnetic particles have been reported such as electrostatic assembly (Goldman et al., 2002), covalent cross-linking (Grubisha et al., 2003; Gao et al., 2004) avidin-biotin technology (Gref et al., 2003), membrane integration (Mirzabekov et al., 2000; Tanaka et al., 2004), and gene fusion techniques (Nakamura et al., 1995b; Yoshino et al., 2004; Yoshino and Matsunaga, 2006). The amount and stability of assembled biomolecules and the percentage of active biomolecules among assembled molecules are dependent on the method used for coupling. However, the fabrication techniques have not been standardized. As applications for magnetic particles in the biotechnology field increase, magnetic particles with greater functionality and novel methods for their production are in demand. Magnetotactic bacteria synthesize uniform, nano-sized magnetite (Fe3O4) particles, which are referred to as “bacterial magnetic particles” (BacMPs). A thin lipid bilayer membrane envelops the individual BacMP, which confers high and even dispersion in aqueous solutions as compared to artificial magnetic particles, making them ideal biotechnological materials (Matsunaga et al., 2003). To use these particles for biotechnological applications, it is important to attach functional molecules such as proteins, antibodies, peptides, or DNA. BacMP-specific proteins have been used as anchor proteins, which facilitate efficient localization and appropriate orientation of various functional proteins attached to BacMPs. We have developed several methods for modification and assembly of these functional organic molecules over the surface of BacMPs using chemical and genetic techniques. In this chapter, we describe advanced magnetic particles used in biomedical applications and the

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom