z-logo
open-access-imgOpen Access
DUV Interferometry for Micro and Nanopatterned Surfaces
Author(s) -
Olivier Soppera,
Ali Dirani,
Fabrice Stehlin,
Hassan Ridaoui,
Arnaud Spangenberg,
Fernand Wieder,
Vincent Roucoules
Publication year - 2011
Publication title -
intech ebooks
Language(s) - English
Resource type - Book series
DOI - 10.5772/20896
Subject(s) - interferometry , materials science , optics , nanotechnology , physics
Recent developments in nanoscience and nanotechnology were strongly supported by advances in nanofabrication. Controlled patterning of nanostructured materials has become increasingly important because of the ever-decreasing dimensions of various devices, including those used in electronics, optics, photonics, biology, electrochemistry, and electromechanics (Henzie et al., 2004; Fan et al., 2006). Today, the production of structures with typical dimension in the 1 to 100 nm range with engineered physical and chemical properties is challenging. Different nano-fabrication techniques have been reported in the literature (Nie & Kumacheva, 2008). Recent examples include optical lithography (Cotton et al., 2009), electron beam lithography (Gonsalves et al. 2009), X-ray lithography (Im et al., 2009), laser writing (Soppera et al., 2008), scanning probe techniques (including optical near-field lithography (El Ahrach et al., 2007), pen nanolithography (Cai & Ocko, 2005), dip-pen lithography (Christman et al., 2009), nanoshaving (Seo & Borguet, 2006) and thermal scribing (Lee et al., 2008)), microcontact printing (Huh et al., 2009), micro-phase separation of block copolymers (Greater et al., 2007), dewetting (Yoon et al., 2008), nanoimprint lithography (He et al., 2009) or electrochemical nanopatterning (Jegadesan et al., 2006). The major remark is that the size of the achievable patterns is strongly dependent of the technique used and can vary between the micrometer to the sub-10 nanometre length scale. This point is a serious limitation when different length scales are needed. Furthermore, in most cases these techniques suffer from different material requirements and limited dimensions of the patterned surface. In this context, interferometric lithography appears of high interest when periodical patterns are needed. Indeed, interferometric techniques can be considered as massively parallel nanofabrication techniques since patterns can be obtained over large area within a single exposure. Moreover, the recourse to wavelength in the Deep-UV range (DUV corresponds

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom