z-logo
open-access-imgOpen Access
Observation Likelihood Model Design and Failure Recovery Scheme Toward Reliable Localization of Mobile Robots
Author(s) -
Chang-bae Moon,
Woojin Chung,
Nakju Lett Doh
Publication year - 2010
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/10496
Subject(s) - computer science , scheme (mathematics) , reliability (semiconductor) , robot , mobile robot , range (aeronautics) , artificial intelligence , service robot , real time computing , reliability engineering , mathematical analysis , power (physics) , physics , materials science , mathematics , quantum mechanics , engineering , composite material
Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1) How to design an observation likelihood model? 2) How to detect the localization failure? 3) How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom