z-logo
open-access-imgOpen Access
Adaptive estimation with partially overlapping models
Author(s) -
Sun-Young Shin,
Jason P. Fine,
Yufeng Liu
Publication year - 2015
Publication title -
statistica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 77
eISSN - 1996-8507
pISSN - 1017-0405
DOI - 10.5705/ss.2014.233
Subject(s) - a priori and a posteriori , pairwise comparison , covariate , computer science , oracle , identification (biology) , identifiability , estimation theory , function (biology) , algorithm , data mining , machine learning , mathematical optimization , mathematics , artificial intelligence , philosophy , botany , software engineering , epistemology , evolutionary biology , biology
In many problems, one has several models of interest that capture key parameters describing the distribution of the data. Partially overlapping models are taken as models in which at least one covariate effect is common to the models. A priori knowledge of such structure enables efficient estimation of all model parameters. However, in practice, this structure may be unknown. We propose adaptive composite M-estimation (ACME) for partially overlapping models using a composite loss function, which is a linear combination of loss functions defining the individual models. Penalization is applied to pairwise differences of parameters across models, resulting in data driven identification of the overlap structure. Further penalization is imposed on the individual parameters, enabling sparse estimation in the regression setting. The recovery of the overlap structure enables more efficient parameter estimation. An oracle result is established. Simulation studies illustrate the advantages of ACME over existing methods that fit individual models separately or make strong a priori assumption about the overlap structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom