z-logo
open-access-imgOpen Access
Oracle-Efficient Confidence Envelopes for Covariance Functions in Dense Functional Data
Author(s) -
Guanqun Cao,
Li Wang,
Yehua Li,
Lijian Yang
Publication year - 2015
Publication title -
statistica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 77
eISSN - 1996-8507
pISSN - 1017-0405
DOI - 10.5705/ss.2014.182
Subject(s) - oracle , covariance , confidence interval , mathematics , covariance function , computer science , statistics , software engineering
We consider nonparametric estimation of the covariance function for dense functional data using computationally efficient tensor product B-splines. We develop both local and global asymptotic distributions for the proposed estimator, and show that our estimator is as efficient as an “oracle” estimator where the true mean function is known. Simultaneous confidence envelopes are developed based on asymptotic theory to quantify the variability in the covariance estimator and to make global inferences on the true covariance. Monte Carlo simulation experiments provide strong evidence that corroborates the asymptotic theory. Examples of near infrared spectroscopy data and speech recognition data are provided to illustrate the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom