z-logo
open-access-imgOpen Access
Model selection consistency of Dantzig selector
Author(s) -
Lixing Zhu,
Yujie Gai,
Lu Lin
Publication year - 2012
Publication title -
statistica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 77
eISSN - 1996-8507
pISSN - 1017-0405
DOI - 10.5705/ss.2012.061
Subject(s) - consistency (knowledge bases) , selection (genetic algorithm) , computer science , statistics , mathematics , artificial intelligence
Consistency of model selection hinges on the correlation between significant and insignificant predictors for “large p, small n” problems. Thus, Irrepresentable Conditions play an important role in consistency, that insignificant predictors are irrepresentable by significant ones. In this paper, we provide Irrepresentable Conditions when the Dantzig selector is applied; they ensure that the Dantzig selector consistently selects the true model with fixed p and diverging p (number of predictors) even at an exponential rate of n. Our conditions are sufficient for a strong sign consistency and Weak Irrepresentable Conditions are necessary for a weak sign consistency. Strong sign consistency leads to the conventional consistency of the estimation. As a by-product, the results also show the difference between the Dantzig selector and the Lasso when consistency is at issoe. Simulation studies are performed to examine the theoretical results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom