z-logo
open-access-imgOpen Access
Generalized Fiducial Inference via Discretization
Author(s) -
Jan Hannig
Publication year - 2012
Publication title -
statistica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 77
eISSN - 1996-8507
pISSN - 1017-0405
DOI - 10.5705/ss.2011.102
Subject(s) - fiducial marker , inference , discretization , computer science , mathematics , artificial intelligence , mathematical analysis
In addition to the usual sources of error that have been long studied by statisticians, many data sets have been rounded off in some manner, either by the measuring device or storage on a computer. In this paper we investigate theoretical properties of generalized fiducial distribution introduced in Hannig (2009) for discretized data. Limit theorems are provided for both fixed sample size with increasing precision of the discretization, and increasing sample size with fixed precision of the discretization. The former provides an attractive definition of generalized fiducial distribution for certain types of exactly observed data overcoming a previous non-uniqueness due to Borel paradox. The latter establishes asymptotic correctness of generalized fiducial inference, in the frequentist, repeated sampling sense, for i.i.d. discretized data under very mild conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom