A Note on Prediction with Misspecified Models
Author(s) -
Khreshna Syuhada
Publication year - 2012
Publication title -
itb journal of sciences
Language(s) - English
Resource type - Journals
ISSN - 1978-3043
DOI - 10.5614/itbj.sci.2012.44.3.2
Subject(s) - autoregressive model , estimator , interval (graph theory) , prediction interval , series (stratigraphy) , mathematics , monte carlo method , econometrics , statistics , paleontology , combinatorics , biology
Suppose that a time series model is fitted. It is likely that the fitted model is not the true model. In other words, the model has been misspecified. In this paper, we consider the prediction interval problem in the case of a misspecified first-order autoregressive or AR(1) model. We have calculated the coverage probability of an upper one-step-ahead prediction interval for both properly specified and misspecified models through Monte Carlo simulation. It was found that dealing with prediction interval for misspecified model is complicated: the distribution of a future observation conditional on the last observation and the parameter estimator is not identical to the distribution of this future observation conditional on the last observation alone
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom