z-logo
open-access-imgOpen Access
Experimental Study of Confined Low-, Medium- and High-Strength Concrete Subjected to Concentric Compression
Author(s) -
Antonius Antonius,
Iswandi Imran
Publication year - 2012
Publication title -
itb journal of engineering science
Language(s) - English
Resource type - Journals
ISSN - 1978-3051
DOI - 10.5614/itbj.eng.sci.2012.44.3.4
Subject(s) - ductility (earth science) , materials science , compressive strength , concentric , composite material , compression (physics) , reinforcement , structural engineering , square (algebra) , geotechnical engineering , geology , engineering , creep , mathematics , geometry
An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects of these parameters on the strength and ductility of square-confined concrete were evaluated. Of the specimens tested in this study, the columns made with higher-strength concrete produced less strength enhancement and ductility than those with lower-strength concrete. The steel configurations were found to have an important role in governing the strength and ductility of the confined high-strength concrete. Moreover, several models of strength enhancement for confined concrete available in the literature turned out to be quite accurate in predicting the experimental results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom